INTEGRATION OF THE EQUATIONS OF MOTION
OF A SORBABLE MIXTURE THROUGH A
NONDEFORMABLE POROUS MEDIUM
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Numerical solutions are found for the quasilinear dynamic equations of sorption taking the
effective longitudinal mixing into account.

The dynamics of sorption in a nondeformable porous medium is described by a system of gquasilinear
partial differential equations, Such a system of quasilinear equations can be solved only numerically for
an arbitrary nonlinear sorption isotherm,

Numerical solutions were found for the sorption dynamic equations in [1-3] for a Langmuir isotherm
without an account of the longitudinal mixing, but the accuracy of the network system for the numerical cal-
culation was not specified, and the conditions for absolute stability of the solution scheme were not ex-
amined,

For a convex sorption isotherm there exists an invariant solution [4] corresponding to a traveling-
wave mode (a stationary front, the parallel-transport mode). In the stationary-front mode the partial dif-
ferential equations reduce to ordinary differential equations. In the absence of longitudinal mixing the sys-
tem of dynamic equations for sorption can be reduced to quadratures {5]. When longitudinal mixing is
taken into account, however, the system of dynamic equations for sorption in the stationary-front mode
can be solved only numerically, as is shown below.

Below we analyze the conditions for absolute stability of the difference scheme for the dynamic equa-
tions of sorption, taking longitudinal mixing into account. We give illustrative numerical solutions. We
find analytic solutions for the dynamic equations taking into account longitudinal mixing for a stepped (rec-
tangular) isotherm. :

The system of dynamic equations for sorption consists of the mass-balance equation, the kinetic
equations for sorption in the porous grains, and the initial and boundary conditions:
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We would usuaily have g, > 1, so we can neglect the third term in Eq. (1). Conditions (3) and (4) in-
corporate the continuity condition, The boundary condition, i.e., the function Hit), is found from the solu-
tion of the ordinary nonlinear equation by the Runge—Kutta Method:

YH, = F(t) — ¢ (), H(0) = H, (5)
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We solve the boundary-value problem for system (1), (2) with conditions (3), (4) numerically, by the pivo-
tal condensation method. Using a six-point pattern with a weight of 0.5 we write the implicit iterative
scheme of the second order of accuracy, O(h? +7%):
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Implicit iterative scheme (6)-(8) is not absolutely stable, so we must find the conditions under which it is
stable. We denote the error of the difference scheme by
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After some calculation, we find from (10), (11)
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A sufficient condition for the absolute stability of difference equations (10), (11) is
1%(B)] < l)‘i (A)[: (14)

where A;(B) and A;(A) are the eigenvalues of the matrices By, A;,. We find the eigenvalues from the char-
acteristic equation. After some calculation we find
oAl - —Q - 2V PR cos — - s =L (15)
n -
The pivotal condensation method is stable for @ > 0, P> 0, R> 0, Q> P + R. Under these conditions we
have Q > 2VPR, so that the eigenvalues of matrix A;, are always negative, From condition (14), and using
(13) and (15), we find restrictions on the time step:
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We see from (16) that by varying (0 < ¢ < 1) in the appropriate manner we can increase the time
step 7.

As an example we choose the Langmuir isotherm
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and integrate system (1)-(4) for the following parameters: ¢ =y =0.5;¢;=0; ¢ =1, F(t) =1; H, =0; h

= (0.06; b = 15; 7 = +1/51; p=50. The solid curves in Fig. la and b, respectively, show the distributions
in the column of the concentration of the material, e(z, t), and the concentration of the absorbed material,
g(z, t). The stationary-front regime sets in at

fnd — it <e, (18)
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where ¢ is the error of the calculation, u, is the second central
moment, ¢; and @, are the first and second initial moments, p,

= @y—0of; ap =n \ z"le(z, t)dz.
0

Using condition (18) we showed that the stationary-front
regime sets inat t > t, = 3.6 and z =z, = 6,75 and that the dis-
tribution curves can be calculated within 1% from the asymptotic
equations corresponding to the stationary-front regime.

Using the methods of Lie-group theory [4] we can show that

q - N . 45' ; system (1)-(4) permits an invariant solution corresponding to a

\\m\%; 10 Galilean transport operator (the stationary-front regime), In this
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Fig. 1. a) Distribution of the con~
centration of material, c(z, t); b)
that of the concentration of absorbed
material, q(z, t). The dashed curves
are the asymptotic solutions (24),

(25). wg e g(g) (21)

On the basis of physical considerations we can conclude that,
under conditions (20), the functions c(y) and g(y) must be mono-
tonically decreasing functions, so that from (19), (20) we conclude
that the following conditions must hold:

Condition (21) always holds for sorption dynamics in the case of
a convex isotherm, i.e., one which begins at the origin, f(0) =0,
and lies above the straight line connecting the origin (0, 0) and the point (1,1) on the inferval ¢ =c

=1.

System (19) can be reduced to a single nonlinear second-order equation, which can be solved by the
pivotal condensation method. For a stepped isotherm, like the limiting (p > 1) Langmuir isotherm (17),
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we can find the solution of system (19), (20) analytically. For isotherm (22) with ¢ # y # 0 we find from
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Using (19) and (20), we find the solution of (23) to be
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In the case @ =7y = 0.5 we have y? =—0.39.
We find the constant yo from the integral form of the mass-balance equation. Multiplying (1) by dzdt
and integrating over z(0 <z =<z,) and t(0 =t =t,), using solutions (24) and (25), and taking the limits z,, t;
— o we find a transcendental equation for y,: ’
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In the case ¢ =y = 0.5 we find from (27) the result y, =-0.475. We see from solutions (25), (24) that q(y)
is displaced by an amount |y®| with respect to c(y). In the case ¢ =0 (ly°| = 0) the solutions coincide.
Solutions for the particular case o #0, v = 0 can be found from (25), (24).

In the case o =0, y =0, the second equation in (19) converts into the isotherm ¢ = ¢(q) or g = f(c).
In this case we find from (19), after integrating,

c— 1 =a -dL , (28)
dy
and we then find
{4 —yY :
, l—exp| T2, —oo<C Yyl .
0= o cw-] Pl ) eV 29)
[ 0 v Yy <y < oo,
We find the integration constant y, from the integral form of Eq. (1):
Y, =" % [L—c{0)] == aexp (—~ —-—Z—:’—— ) (30)

From the solution of transcendental Eq. (30), we have y, = 0.567¢. Solutions (24) and (25) for t = 4.0 are
shown by the dashed curves in Fig. 2a and b. In practice, porous zeolite grains are frequently used; the
corresponding isotherm is rectangular. We see from Fig. 1 that in this case the asymptotic solutions cor-
responding to the stationary-front regime can be described by analytic solutions (24), (25).

NOTATION

is the concentration of the sorbed gas (or liquid) in the filtration flow;

is the concentration of the material absorbed by the medium from the porous grains;
is the relative longitudinal-mixing coefficient (longitudinal dispersion);

is the relative kinetic coefficient;

are the functions describing the forward and reverse sorption isotherms;

are the coordinate and time steps, respectively.
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